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Excess Molar Enthalpies of (Butylamine + an Ether) at 298.15 K

T. M. Letcher* and A. Gotdont

Department of Chemistry and Applied Chemistry, University of Natal, King George V Avenue,

Durban 4001, Republic of South Africa

The excess molar enthalpies HE of butylamine + diethyl ether, +dipropyl ether, +bis(1-methylethyl)
ether, +dibutyl ether, +1,1-dimethylethyl methyl ether, +1,1-dimethylpropyl methyl ether, +tetrahy-
drofuran, +tetrahydropyran, and +1,4-dioxane have been measured over the whole composition range
at 298.15 K in order to investigate interactions between butylamine and the three classes of ethers, namely
straight chain, branched chain, and cyclic. All the mixtures show endothermic behavior. The results
reported here are compared to Hﬁ results for related systems involving dibutylamine published recently
by our group. The experimental results have been correlated using the NRTL and UNIQUAC equations.

Introduction

In continuation of our work on the thermodynamics of
nonelectrolyte mixtures containing polar organic sub-
stances (Letcher and Domanska, 1994a,b; Letcher et al.,
1994a,b) we have determined the excess molar enthalpies
of the binary liquid mixtures of butylamine + diethyl ether,
+dipropyl ether, +bis(1-methylethyl) ether, +dibutyl ether,
+1,1-dimethylethyl methyl ether, +1,1-dimethylpropyl
methyl ether, +tetrahydrofuran, +tetrahydropyran, and
+1,4-dioxane, over the whole composition range at 298.15
K. These results complement our previous work on excess
molar enthalpies H5 and excess molar volumes V5, of
dibutylamine or tributylamine with ROR’, a straight-chain,
branched-chain, or cyclic ether (Letcher and Domanska,
1994a,b; Letcher et al., 1994a,b). The ethers used in the
previous work are identical to the ethers used in the work
reported here and include all three types of ethers—straight
chain, branched, and cyclic. The results reported in this
work are compared to these earlier results. Of the nine
systems presented in this work only HE (butylamine + 1,4
dioxane) has previously been reported by Acevedo et al.
(1988).

Experimental Section

Materials. The chemicals (with the exception of 1,1-
dimethylpropyl methyl ether) were supplied by Janssen
Chimica. The 1,1-dimethylpropyl methyl ether was sup-
plied by Aldrich Chemicals Co. Each of the solvents was
distilled, dried, and degassed before use as previously
described (Letcher and Domanska, 1994a). The mole
fraction of water in each of the liquids was determined by
a Karl—Fischer titration to be <0.001. The solvents were
kept in a drybox before use.

Procedure. A ThermoMetric 2277 thermal activity
monitor microcalorimeter was used to determine the molar
enthalpies of mixing. All measurements were made at
(298.15 £+ 0.01) K. The method has been described (Letcher
and Scoones, 1982).

The performance of the calorimeter was regularly checked
by measuring Hr':;] of the test mixtures (benzene + cyclo-
hexane). Agreement with the literature results (Battler
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Figure 1. Excess enthalpies of butylamine (1) + straight chain
ether (2). Experimental results at 298.15 K: (1) diethyl ether, (2)
dipropyl ether, (3) dibutyl ether. The curves are calculated from
the Redlich—Kister equation.

et al., 1985) was within +1% for every one of the 9 mixtures
tested between x = 0.1 and x = 0.9 mole fraction.

Results and Discussion

The H, results are shown in Figures 1—3 and are given
in Table 1 together with the deviations oHE, calculated
from the smoothing equation:

r=k
OHE/(@-mol™) = HE /(3 mol™) — x(1 — ) S A1 — 2x)"

@)

where x refers to the butylamine.

The values of the parameters A, are given in Table 2.
The results of HE1 (butylamine + 1,4-dioxane) previously
reported (Acevedo et al., 1988) differ from ours results by
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Figure 2. Excess enthalpies of butylamine (1) + branched chain
ether (2). Experimental results at 298.15 K: (1) 1,1-dimethylethyl
methyl ether, (2) 1,1-dimethylpropyl methyl ether, (3) bis(1-
methylethyl) ether. The curves are calculated from the Redlich—
Kister equation.
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Figure 3. Excess enthalpies of butylamine (1) + cyclic ether (2).
Experimental results at 298.15 K: (1) tetrahydrofuran, (2) tet-
rahydropyran, (3) 1,4-dioxane. The curves are calculated from the
Redlich—Kister equation.

about 120 J-mol~1 at x = 0.5. Our results were made with
great care and repeated many times, and the purity was
checked before each run. It is possible that Acevedo and
co-workers did not degas the mixtures before taking
measurements and also were not careful in excluding
atmospheric moisture from the butylamine.

HE values have been reported for many binary mix-
tures containing butylamine. Negative HrEn values, which

Table 2. Parameters A, and Standard Deviations s for
Hﬁ of Butylamine (1) + an Ether (2) at 298.15 K by Eq 1

ether Ao Ap Ao As S
diethyl 1055 223 74 —57 4.4
dipropyl 2058 160 —410 19 7.2
dibutyl 2530 52 -261 109 8.9
bis(1-methylethyl) 1533 49 -102 175 5.1
1,1-dimethylpropyl methyl 1321 —-45 —108 400 7.1
1,1-dimethylethyl methyl 1114 130 12 145 4.0
1,4-dioxane 2094 287 384 —-735 6.7
tetrahydrofuran 615 135 -3 132 39
tetrahydropyran 892 276 52 —-190 5.9

Table 3. Excess Enthalpies H, at x = 0.5, Where A =
HE (Butylamine + an Ether), B = H5 (Butylamine +

Hexane) = 986 J-mol~1, and C = HE(CkH, + an Ether)
(All Measurements Refer to 298.15 K)

A—-B -
A%J- ClJ- ClJ-
ether mol™t mol=t ref CkHi mol~!
diethyl 264 439 ¢ cyclohexane —-1161
dipropyl 512 205 d heptane —676
dibutyl 633 93 ¢ hexane —446
bis(1-methylethyl) 383 256 d heptane —859
1,1-dimethylpropyl 330 268 b heptane —924
methyl
1,1-dimethylethyl 279 383 e heptane —1090
methyl
1,4-dioxane 524 1809 c¢ heptane —2271
tetrahydrofuran 154 718 ¢ hexane —1532
tetrahydropyran 223 608 d cyclopentane —1369

a Refers to this work. ® Our unpublished data. ¢ Christiansen et
al. (1982). d Christiansen et al. (1988). ¢ Tusel-Langer et al. (1991).

were symmetrical about mole fraction x = 0.5, were
observed for (butylamine + an alkanol) systems by Chris-
tiansen et al. (1982, 1988) with minima ranging from
—2595 J-mol~ for propan-1-ol to —3901 J-mol~1 for butan-
1-ol at 298.15 K. Endothermic HE, effects were observed
for (butylamine + a straight-chain alkane) with maxima
of 1012 J-mol~! and of 1218 J-mol~* at 298.15 K for hexane
and hexadecane, respectively.

Hﬁ(a primary or a secondary amine + an alkanol)
shows the strongest negative values found for organic
mixtures in the literature (Christiansen et al., 1982, 1988;
Tusel-Langer et al., 1991). This is due to strong inter-
molecular interactions between the NH group of the amine
molecule and the OH group of the alkanol molecule. In
contrast to this, HE,(butyIamine + ROR') was found in
this work to be positive. This was also true for
HE](dibutyIamine or tributylamine + ROR’) reported pre-
viously by Letcher and Domanska (1994a) and Letcher et
al. (1994a).

The magnitude of the interaction between butylamine
and ROR' can be obtained by subtracting from A =
Hﬁ(butylamine + ROR’) the enthalpic contributions re-
sulting from dissociation of butylamine on the one hand
and ROR' on the other. These contributions can be
estimated from B = HrEn(butyIamine + CkH)) and C =
HE(ROR' + CxH)) where CH, relates to nonpolar alkane.
The result of such an analysis at x = 0.5 is given in Table
3.

Negative values of (A — B — C) indicate an interaction
between the NH, group of the amine molecule and the O
atom of the ether molecule. Results in Table 3 show that
the interaction decreases in the following order: diethyl
ether > dipropyl ether > dibutyl ether for straight-chain
ethers, 1,1-dimethylpropyl methyl ether > 1,1-dimethyl-
ethyl methyl ether > bis(1-methylethyl) ether for the
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Table 4. Correlation of the Excess Molar Enthalpies HE, of (Butylamine + an Ether) by Means of the NRTL, UNIQUAC,
and UNIQUAC ASM Equations: Values of Parameters and Measures of Deviations

parameters/J-mol—1

deviations

UNIQUAC ASM NRTL UNIQUAC UNIQUAC ASM
Aulz, AUz oP o°, Ord O'rd

NRTL?2 UNIQUAC
ether 012 - 011, U12 - Q22 Augz, Auzy
diethyl —114.34,1419.88 —235.41,772.71
dipropyl 849.39, 1497.69 —123.85,979.22
dibutyl 1388.07, 1663.30 —168.32, 1190.08

bis(1-methylethyl)
1,1-dimethylpropyl methyl
1,1-dimethylethyl methyl

—567.97, 1137.49
446.18, 999.36
34.09, 1275.47

1,4-dioxane 1185.20, 1350.18 792.90, 298.35
tetrahydrofuran —183.68, 899.80 156.81, 132.98
tetrahydropyran —287.51, 1449.19 —191.47,661.77

a Calculated for oy, = 0.3.° Given by ¢ = (SHS/HE). ¢ Given by o = [S(HE —

HE caig)Z(HR)? (N — K)JY2.

branched-chain ethers, and 1,4-dioxane > tetrahydrofuran
> tetrahydropyran for cyclic ethers. In general, the longer
the alkyl group of the ether, the weaker is the association
with butylamine. A similar effect was seen with (dibutyl-
amine + an ether) (Letcher et al., 1994a). The fact that
the (A — B — C) values calculated for (dibutylamine +
ROR’) are much more positive than for (butylamine +
ROR’), reported here, where ROR' are the straight-chain
ethers, indicates that the association between the butyl-
amine and the ether is much greater than between the
dibutylamine and the ether.

For the branched-chain ethers the value of (A — B — C)
decreases with the increasing number of CHj3; groups
attached to the carbon adjacent to the ether oxygen. This
is probably due to the inductive effect of the CHj3 group in
the branched-chain ethers which increases the electron
density in the oxygen atom, resulting in an enhanced cross-
association. The fact that the (A — B — C) values for
(butylamine + ROR’') where ROR' are cyclic ethers are
much more negative than for (butylamine + ROR') where
ROR' are straight-chain or branched-chain ethers could be
due to the larger dipole or quadrupole moments of cyclic
ethers (Riddick et al., 1986). As expected, the greatest
association is between the butylamine and the ring com-
pound containing two ether oxygen atoms. A similar effect
was seen with (dibutylamine + an ether).

The experimental results have been correlated using the
NRTL equation (Renon and Prausnitz, 1968), the simple
UNIQUAC equation (Abrams and Prausnitz, 1975), and
the UNIQUAC ASM model (Nagata, 1985). The calcula-
tions with the UNIQUAC ASM (Kretshmer and Wiebe
model of association) were carried out by assuming that
the association equilibrium constant for the pure butyl-
amine was Ky = 0.96 and that the molar enthalpy of
formation for the cyclic dimer of butylamine was hy =
—13.2 kJ-mol~1 at 298.15 K (Funke et al., 1989). The molar
volume of butylamine was calculated to be 99.86 cm3-mol~1
at 298.15 K (Letcher and Gotdon, in press) and the molar
volumes of the ethers were taken from previous work
(Letcher and Domanska, 1994a). The binary parameters
and the absolute arithmetic-mean deviations obtained by
minimizing the sum of the deviations between the experi-
mental and calculated Hﬁ values (using the Marquardt
maximum neighborhood method (Marquardt, 1963) for
minimization) are presented in Table 4.

The results of the correlation of experimental points with
the two-parameter NRTL and UNIQUAC equations are in
the same range as the four-parameter Redlich—Kister
equation. The correlation of experimental points in binary
mixtures with the results obtained by means of the

—216.40, 870.47
—212.66, 777.70
—269.19, 812.12

—1292.62, 1026.49 4.7,3.0 4.7,3.0 25.9,15.1
—1079.82, 895.05 16.4,7.7 15.2,7.2 445, 16.5
—1013.22, 850.68 13.7,3.7 115,29 36.3,9.3
—1238.78, 997.89 6.5,2.4 6.1,2.1 325,135
—1291.91, 1034.74 9.7,4.4 9.5,4.2 31.2,15.1
—1299.81, 1032.32 43,23 43,22 21.8,12.3
—784.56, 675.79 16.4, 6.7 16.9, 6.8 78.1, 30.3
—1440.89, 1117.96 4.2,4.3 4.3,45 16.0, 21.0
—1364.56, 1075.86 6.3,5.3 6.3,5.3 14.4,14.1

Hi(calg)?(n — K)]¥2. @ Given by o, =100[3 (H5, —

UNIQUAC ASM model are not as good as those obtained
by the simple NRTL and UNIQUAC models. A better
description by the UNIQUAC ASM model was obtained
with the association constant as the third adjustable
parameter.

The optimized value of the association constant is,
however, smaller than that used by Funke et al. (1989) and
results in values ranging between (0.00 and 0.26) at 298.15
K. For the nine mixtures presented in Table 4, the
description of excess molar enthalpy is given by the two-
parameter UNIQUAC model and the NRTL with an
average standard deviation [¢(= 8.1 J-mol~! and 4= 9.7
J-mol~1, respectively. The description obtained by means
of the UNIQUAC ASM model with the association constant
as the third adjustable parameter is also in the same range.
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