Excess Molar Enthalpies of (Butylamine + an Ether) at 298.15 K

T. M. Letcher* and A. Gołdon ${ }^{\dagger}$

Department of Chemistry and Applied Chemistry, University of Natal, King George V Avenue, Durban 4001, Republic of South Africa

Abstract

The excess molar enthalpies $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ of butylamine + diethyl ether, +dipropyl ether, +bis(1-methylethyl) ether, +dibutyl ether, +1,1-dimethylethyl methyl ether, +1,1-dimethylpropyl methyl ether, +tetrahydrofuran, +tetrahydropyran, and +1,4-dioxane have been measured over the whole composition range at 298.15 K in order to investigateinteractions between butylamine and the three dasses of ethers, namely straight chain, branched chain, and cyclic. All the mixtures show endothermic behavior. The results reported here are compared to $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ results for related systems involving dibutylamine published recently by our group. The experimental results have been correlated using the NRTL and UNIQUAC equations.

Introduction

In continuation of our work on the thermodynamics of nonelectrolyte mixtures containing polar organic substances (Letcher and Domańska, 1994a,b; Letcher et al., 1994a,b) we have determined the excess molar enthalpies of the binary liquid mixtures of butylamine + diethyl ether, +dipropyl ether, +bis(1-methyl ethyl) ether, +dibutyl ether, +1,1-dimethylethyl methyl ether, +1,1-dimethylpropyl methyl ether, +tetrahydrofuran, +tetrahydropyran, and +1,4-dioxane, over the whole composition range at 298.15 K . These results complement our previous work on excess molar enthalpies $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ and excess molar volumes $\mathrm{V}_{\mathrm{m}}^{\mathrm{E}}$ of dibutylamine or tributylamine with ROR', a straight-chain, branched-chain, or cyclic ether (Letcher and Domańska, 1994a, b; Letcher \& al., 1994a,b). The ethers used in the previous work are identical to the ethers used in the work reported here and include all threetypes of ethers-straight chain, branched, and cyclic. The results reported in this work are compared to these earlier results. Of the nine systems presented in this work only $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ (butylamine $+1,4$ dioxane) has previously been reported by Acevedo et al. (1988).

Experimental Section

Materials. The chemicals (with the exception of 1,1dimethylpropyl methyl ether) were supplied by J anssen Chimica. The 1,1-dimethylpropyl methyl ether was supplied by Aldrich Chemicals Co. Each of the solvents was distilled, dried, and degassed before use as previously described (Letcher and Domańska, 1994a). The mole fraction of water in each of the liquids was determined by a Karl-Fischer titration to be <0.001. The solvents were kept in a drybox before use.

Procedure. A ThermoMetric 2277 thermal activity monitor microcalorimeter was used to determine the molar enthalpies of mixing. All measurements were made at (298.15 ± 0.01) K. The method has been described (Letcher and Scoones, 1982).

The performance of the calorimeter was regularly checked by measuring $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ of the test mixtures (benzene + cyclohexane). Agreement with the literature results (Battler

[^0]

Figure 1. Excess enthal pies of butylamine (1) + straight chain ether (2). Experimental results at 298.15 K : (1) diethyl ether, (2) dipropyl ether, (3) dibutyl ether. The curves are calculated from the Redlich-Kister equation.
et al., 1985) was within $\pm 1 \%$ for every one of the 9 mixtures tested between $x=0.1$ and $x=0.9$ mole fraction.

Results and Discussion

The $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ results are shown in Figures 1-3 and are given in Table 1 together with the deviations $\delta \mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$, calculated from the smoothing equation:

$$
\begin{equation*}
\delta \mathrm{H}_{\mathrm{m}}^{\mathrm{E}} /\left(J \cdot \mathrm{~mol}^{-1}\right)=\mathrm{H}_{\mathrm{m}}^{\mathrm{E}} /\left(\mathrm{J} \cdot \mathrm{~mol}^{-1}\right)-\mathrm{x}(1-\mathrm{x}) \sum_{\mathrm{r}=0}^{\mathrm{r}=\mathrm{k}} \mathrm{~A}_{\mathrm{r}}(1-2 \mathrm{x})^{r} \tag{1}
\end{equation*}
$$

where x refers to the butylamine.
The values of the parameters A_{r} are given in Table 2. The results of $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ (butylamine $+1,4$-dioxane) previously reported (Acevedo et al., 1988) differ from ours results by
Table 1. Excess Molar Enthalpies, for Binary Mixtures of Butylamine (1) + an Ether (2), and the Deviations, $\delta \mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$, Calculated from Eq $\mathbf{1}$ and Table $\mathbf{2}$ at $\mathbf{2 9 8 . 1 5 \mathrm { K }}$

Figure 2. Excess enthal pies of butylamine (1) + branched chain ether (2). Experimental results at 298.15 K : (1) 1,1-dimethylethyl methyl ether, (2) 1,1-dimethylpropyl methyl ether, (3) bis(1methylethyl) ether. The curves are calculated from the RedlichKister equation.

Figure 3. Excess enthal pies of butylamine (1) + cyclic ether (2). Experimental results at 298.15 K : (1) tetrahydrofuran, (2) tetrahydropyran, (3) 1,4-dioxane. The curves are calculated from the Redlich-Kister equation.
about $120 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$ at $\mathrm{x}=0.5$. Our results were made with great care and repeated many times, and the purity was checked before each run. It is possible that Acevedo and co-workers did not degas the mixtures before taking measurements and also were not careful in excluding atmospheric moisture from the butylamine.
$\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ values have been reported for many binary mixtures containing butylamine. Negative $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ values, which

Table 2. Parameters A_{r} and Standard Deviations s for $\mathbf{H}_{\mathrm{m}}^{\mathrm{E}}$ of Butylamine (1) + an Ether (2) at 298.15 K by Eq 1

ether	A_{0}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	S
diethyl	1055	223	74	-57	4.4
dipropyl	2058	160	-410	19	7.2
dibutyl	2530	52	-261	109	8.9
bis(1-methylethyl)	1533	49	-102	175	5.1
1,1-dimethylpropyl methyl	1321	-45	-108	400	7.1
1,1-dimethylethyl methyl	1114	130	12	145	4.0
1,4-dioxane	2094	287	384	-735	6.7
tetrahydrofuran	615	135	-3	132	3.9
tetrahydropyran	892	276	52	-190	5.9

Table 3. Excess Enthalpies $\mathbf{H}_{\mathrm{m}}^{\mathrm{E}}$ at $\mathbf{x}=0.5$, Where $\mathrm{A}=$ H_{m}^{E} (Butylamine + an Ether), $\mathrm{B}=\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ (Butylamine +
Hexane) $=986 \mathrm{~J} \cdot \mathrm{~mol}^{-1}, \mathrm{c}$ and $\mathrm{C}=\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}\left(\mathrm{C}_{\mathbf{k}} \mathrm{H}_{\mathrm{l}}+\right.$ an Ether) (All Measurements Refer to 298.15 K)

ether	A^{a} / J. mol^{-1}	$\begin{aligned} & \mathrm{C/J} \cdot \\ & \mathrm{~mol}^{-1} \end{aligned}$	ref	$\mathrm{C}_{\mathrm{k}} \mathrm{H}_{1}$	$\begin{gathered} \mathrm{A}-\mathrm{B}- \\ \mathrm{C} / \mathrm{J} \cdot \\ \mathrm{~mol}^{-1} \end{gathered}$
diethyl	264	439	c	cyclohexane	-1161
dipropyl	512	205	d	heptane	-676
dibutyl	633	93	c	hexane	-446
bis(1-methylethyl)	383	256	d	heptane	-859
1,1-dimethyl propyl methyl	330	268	b	heptane	-924
1,1-dimethylethyl methyl	279	383	e	heptane	-1090
1,4-dioxane	524	1809	C	heptane	-2271
tetrahydrofuran	154	718	c	hexane	-1532
tetrahydropyran	223	608	d	cyclopentane	-1369

${ }^{\text {a }}$ Refers to this work. ${ }^{\text {b }}$ Our unpublished data. ${ }^{\mathrm{c}}$ Christiansen et al. (1982). ${ }^{\text {d }}$ Christiansen et al. (1988). ${ }^{\text {e Tusel-Langer et al. (1991). }}$
were symmetrical about mole fraction $\mathrm{x}=0.5$, were observed for (butylamine + an alkanol) systems by Christiansen et al. $(1982,1988)$ with minima ranging from $-2595 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$ for propan-1-ol to $-3901 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$ for butan-1-ol at 298.15 K . Endothermic $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ effects were observed for (butylamine + a straight-chain alkane) with maxima of $1012 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$ and of $1218 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$ at 298.15 K for hexane and hexadecane, respectively.
$\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ (a primary or a secondary amine + an alkanol) shows the strongest negative values found for organic mixtures in the literature (Christiansen et al., 1982, 1988; Tusel-Langer et al., 1991). This is due to strong intermolecular interactions between the NH group of the amine molecule and the OH group of the alkanol molecule. In contrast to this, $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ (butylamine + ROR') was found in this work to be positive. This was also true for $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ (dibutylamine or tributylamine $+\mathrm{ROR}^{\prime}$) reported previously by Letcher and Domańska (1994a) and Letcher et al. (1994a).

The magnitude of the interaction between butylamine and ROR' can be obtained by subtracting from $A=$ $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ (butylamine + ROR') the enthalpic contributions resulting from dissociation of butylamine on the one hand and ROR' on the other. These contributions can be estimated from $B=H_{m}^{E}$ (butylamine $+\mathrm{C}_{k} \mathrm{H}_{\mathrm{l}}$) and $\mathrm{C}=$ $H_{m}^{E}\left(R O R^{\prime}+C_{k} H_{l}\right)$ where $C_{k} H_{l}$ relates to nonpolar alkane. The result of such an analysis at $x=0.5$ is given in Table 3.

Negative values of ($A-B-C$) indicate an interaction between the NH_{2} group of the amine molecule and the O atom of the ether molecule. Results in Table 3 show that the interaction decreases in the following order: diethyl ether > dipropyl ether > dibutyl ether for straight-chain ethers, 1,1-dimethylpropyl methyl ether > 1,1-dimethylethyl methyl ether $>$ bis(1-methylethyl) ether for the

Table 4. Correlation of the Excess Molar Enthalpies H_{m}^{E} of (Butylamine + an Ether) by Means of the NRTL, UNIQUAC, and UNIQUAC ASM Equations: Values of Parameters and Measures of Deviations

ether	parameters/J $\cdot \mathrm{mol}^{-1}$			deviations		
	$\begin{gathered} \text { NRTL }{ }^{\text {N }} \\ g_{12}-g_{11}, g_{12}-g_{22} \end{gathered}$	UNIQUAC $\Delta \mathrm{u}_{12}, \Delta \mathrm{u}_{21}$	UNIQUAC ASM $\Delta \mathrm{u}_{12}, \Delta \mathrm{u}_{21}$	$\begin{gathered} \text { NRTL } \\ \sigma^{\mathrm{b}} \end{gathered}$	$\begin{aligned} & \text { UNIQUAC } \\ & \sigma^{\mathrm{c}, \sigma_{\mathrm{r}}{ }^{\mathrm{d}}} \end{aligned}$	$\begin{gathered} \sigma_{\mathrm{r}}{ }^{\mathrm{d}} \end{gathered}$
diethyl	-114.34, 1419.88	-235.41, 772.71	-1292.62, 1026.49	4.7, 3.0	4.7, 3.0	25.9, 15.1
dipropyl	849.39, 1497.69	-123.85, 979.22	-1079.82, 895.05	16.4, 7.7	15.2, 7.2	44.5, 16.5
dibutyl	1388.07, 1663.30	-168.32, 1190.08	-1013.22, 850.68	13.7, 3.7	11.5, 2.9	36.3, 9.3
bis(1-methylethyl)	-567.97, 1137.49	-216.40, 870.47	-1238.78, 997.89	6.5, 2.4	6.1, 2.1	32.5, 13.5
1,1-dimethylpropyl methyl	446.18, 999.36	-212.66, 777.70	-1291.91, 1034.74	9.7, 4.4	9.5, 4.2	31.2, 15.1
1,1-dimethylethyl methyl	34.09, 1275.47	-269.19, 812.12	-1299.81, 1032.32	4.3, 2.3	4.3, 2.2	21.8, 12.3
1,4-dioxane	1185.20, 1350.18	792.90, 298.35	-784.56, 675.79	16.4, 6.7	16.9, 6.8	78.1, 30.3
tetrahydrofuran	-183.68, 899.80	156.81, 132.98	-1440.89, 1117.96	4.2, 4.3	4.3, 4.5	16.0, 21.0
tetrahydropyran	-287.51, 1449.19	-191.47, 661.77	-1364.56, 1075.86	6.3, 5.3	6.3, 5.3	14.4, 14.1

```
    \({ }^{\text {a }}\) Calculated for \(\alpha_{12}=0.3\). \({ }^{\mathrm{b}}\) Given by \(\sigma=\left(\delta \mathrm{H}_{\mathrm{m}}^{\mathrm{E}} / \mathrm{H}_{\mathrm{m}}^{\mathrm{E}}\right)\). \({ }^{\mathrm{c}}\) Given by \(\sigma=\left[\Sigma\left(\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}-\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}(\text { calc) })^{2} /(\mathrm{n}-\mathrm{k})\right]^{1 / 2}\right.\). \({ }^{\mathrm{d}}\) Given by \(\sigma_{\mathrm{r}}=100\left[\Sigma\left(\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}-\right.\right.\)
\(\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}(\) calc \(\left.\left.)\right)^{2} /\left(\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}\right)^{2}(\mathrm{n}-\mathrm{k})\right]^{1 / 2}\).
```

branched-chain ethers, and 1,4-dioxane > tetrahydrofuran > tetrahydropyran for cydic ethers. In general, the longer the alkyl group of the ether, the weaker is the association with butylamine. A similar effect was seen with (dibutylamine + an ether) (Letcher et al., 1994a). The fact that the ($\mathrm{A}-\mathrm{B}-\mathrm{C}$) values calculated for (dibutylamine + ROR') are much more positive than for (butylamine + ROR'), reported here, where ROR' are the straight-chain ethers, indicates that the association between the butylamine and the ether is much greater than between the dibutylamine and the ether.

For the branched-chain ethers the value of ($\mathrm{A}-\mathrm{B}-\mathrm{C}$) decreases with the increasing number of CH_{3} groups attached to the carbon adjacent to the ether oxygen. This is probably due to the inductive effect of the CH_{3} group in the branched-chain ethers which increases the electron density in the oxygen atom, resulting in an enhanced crossassociation. The fact that the ($\mathrm{A}-\mathrm{B}-\mathrm{C}$) values for (butylamine + ROR') where ROR' are cyclic ethers are much more negative than for (butylamine + ROR') where ROR' are straight-chain or branched-chain ethers could be due to the larger dipole or quadrupole moments of cyclic ethers (Riddick et al., 1986). As expected, the greatest association is between the butylamine and the ring compound containing two ether oxygen atoms. A similar effect was seen with (dibutylamine + an ether).

The experimental results have been correlated using the NRTL equation (Renon and Prausnitz, 1968), the simple UNIQUAC equation (Abrams and Prausnitz, 1975), and the UNIQUAC ASM model (Nagata, 1985). The calculations with the UNIQUAC ASM (Kretshmer and Wiebe model of association) were carried out by assuming that the association equilibrium constant for the pure butylamine was $\mathrm{K}_{\mathrm{A}}=0.96$ and that the molar enthalpy of formation for the cydic dimer of butylamine was $\mathrm{h}_{\mathrm{A}}=$ $-13.2 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ at 298.15 K (Funke et al., 1989). Themolar volume of butylamine was calculated to be $99.86 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ at 298.15 K (Letcher and Gołdon, in press) and the molar volumes of the ethers were taken from previous work (Letcher and Domańska, 1994a). The binary parameters and the absolute arithmetic-mean deviations obtained by minimizing the sum of the deviations between the experimental and calculated $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ values (using the Marquardt maximum neighborhood method (Marquardt, 1963) for minimization) are presented in Table 4.

Theresults of the correlation of experimental points with the two-parameter NRTL and UNIQUAC equations are in the same range as the four-parameter Redlich-Kister equation. The correlation of experimental points in binary mixtures with the results obtained by means of the

UNIQUAC ASM model are not as good as those obtained by the simple NRTL and UNIQUAC models. A better description by the UNIQUAC ASM model was obtained with the association constant as the third adjustable parameter.

The optimized value of the association constant is, however, smaller than that used by F unke et al. (1989) and results in values ranging between (0.00 and 0.26) at 298.15 K. For the nine mixtures presented in Table 4, the description of excess molar enthalpy is given by the twoparameter UNIQUAC model and the NRTL with an average standard deviation $\langle\sigma\rangle=8.1 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$ and $\langle\sigma\rangle=9.7$ $\mathrm{J} \cdot \mathrm{mol}^{-1}$, respectively. The description obtained by means of the UNIQUAC ASM model with the association constant as the third adjustable parameter is also in the same range.

Literature Cited

Abrams, D. S.; Prausnitz, J. M. Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 1975, 21, 116-128.
Acevedo, I. L.; Postigo, M. A.; Katz, M. Excess thermodynamic properties and vapor-liquid equilibrium data for the n-butylamine + p-dioxane system at $25^{\circ} \mathrm{C}$. J. Solution Chem. 1988, 17, 977986.

Battler, J . R.; Clark, W. M.; Rowley, R. L. Excess Enthalpy and LiquidLiquid Surfaces for the Cyclohexane-2-Propanol-Water System from 293.15 to 323.15 K. J. Chem. Eng. Data 1985, 30, 254-259.
Christiansen, J. J .; Hanks, R. W.; Izatt, R. M. Handbook of Heats of Mixing; Wiley-Interscience: New York, 1982.
Christiansen, J. J.; Rowley, R. L.; Izatt, R. M. Handbook of Heats of Mixing; Wiley-Interscience: New York, 1988; Supplementary Volume.
Funke, H.; Wetzel, M.; Heintz, A. New application of the ERAS model. Thermodynamics of amine + alkane and alcohol + amine mixtures. Pure Appl. Chem. 1989, 61, 1429-1439.
Letcher, T. M.; Scoones, B. W. H. The excess enthal pies of bicyclohexyl + a cycloalkane and an n-alkane at two temperatures. J. Chem. Thermodyn. 1982, 14, 703-706.
Letcher, T. M.; Domańska, U. The excess enthalpies of (tributylamine + an ether) at the temperature 298.15 K . J. Chem. Thermodyn. 1994a, 26, 553-560.
Letcher, T. M.; Domańska, U. The excess volumes of (tributylamine + an ether) at the temperature 298.15 K. J. Chem. Thermodyn. 1994b, 26, 1241-1247.
Letcher, T. M.; Gołdon, A. The excess molar volumes of (n-butylamine + an ether) at the temperature 298.15 K and the application of the ERAS model. Fluid Phase Equilib., in press.
Letcher, T. M.; Domańska, U.; Govender, P. The excess enthal pies of (dibutylamine + an ether) at the temperature 298.15 K. J . Chem. Thermodyn. 1994a, 26, 681-689.
Letcher, T. M.; Domańska, U.; Govender, P. The excess volumes of (dibutylamine + an ether) at the temperature 298.15 K. J . Chem. Thermodyn. 1994b, 26, 1019-1023.
Marquardt, D. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Appl. Math. 1963, 11, 431-441.

Nagata, I. On thermodynamics of alcohol solutions. Phase equilibria of binary and ternary mixtures containing any numbers of alcohols. Fluid Phase Equilib. 1985, 19, 153-174.
Renon, H.; Prausnitz, J. M. Local compositions in thermodynamics excess functions for liquid mixtures. AIChE J. 1968, 14, 135-141.
Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents. Physi cal Properties and Methods of Purification; Wiley-Interscience: New York, 1986.
Tusel-Langer, E.; Garcia Alonso, J. M.; Villamañan Olfos, M. A.; Lichtenthaler, R. N. Excess enthalpies of mixtures containing
n-heptane, methanol and methyl tert-butyl ether (MTBE). J. Solution Chem. 1991, 20, 153-163.

Received for review September 14, 1995. Accepted J anuary 16, 1996. The authors wish to thank Natal University and F.R.D. (S. Africa) for financial aid. ${ }^{\otimes}$

J E950233J
${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, March 1, 1996.

[^0]: * To whom correspondence should be addressed.
 † On sabbatical leave from the Warsaw University of Technology, Warsaw, Poland. Permanent address: Warsaw University of Technology, Department of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.

